Closing Tue: Taylor Notes 1, 2

Closing Thu: Taylor Notes 3

Final: Sat, June 2, 5:00pm, KANE 130

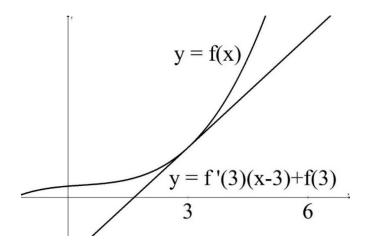
Eight pages, covers everything.

Taylor Notes 1 (TN 1): Tangent Line Error Bounds

Goal: Approximate functions with tangent lines and get error bounds.

Def'n: The first Taylor polynomial for
f(x) based at b is

$$T_1(x) = f(b) + f'(b)(x - b)$$



Entry Task: Find the 1st Taylor polynomial for $f(x) = \sqrt{x}$ at x = 4.

- Use it to estimate $\sqrt{4.5}$.
- Use your calculator to find the difference between this estimate and the actual value.

Bounding the Error

Given an interval around x = b (i.e. $b - a \le x \le b + a$).

Example: Using the theorem, give an error bound for $|\sqrt{x} - T_1(x)|$ based at x = 4 on the interval [3.5, 4.5].

Tangent Linear Error Bound Thm

If
$$|f''(x)| \le M$$
 for all x , then $|f(x) - T_1(x)| \le \frac{M}{2}|x - b|^2$.

To use

Step 1: Find f''(t).

Step 2: Find an upper bound (max) for |f"(t)| on the interval.

Put this in for M in thm.

Step 3: Plug in x = "an endpoint" to get worst case error bound.

Example: $f(x) = \ln(x)$ at b = 1.

- (a) Find the 1st Taylor polynomial.
- (b) Use the error bound formula to find a bound on the error over the interval J = [1/2, 3/2]
- (c) Find an interval around b = 1 where the error is less than 0.01.

Х	f(x)	$T_1(x)$	$ f(x) - T_1(x) $
1	0	0	0
1.2	0.1823	0.2	0.01768
1.4	0.3364	0.4	0.06353
0.9	-0.1053	-0.1	0.00536

Proof of error bound for x > b:

Start with $f(x) - f(b) = \int_{b}^{x} f'(t)dt$.

Do integration by parts,

(with
$$u = f'(t)$$
, $dv = dt$, $du = f''(t)$, $v = t - x$)

to get

$$f(x) - f(b) = f'(b)(x - b) - \int_{b}^{x} (t - x)f''(t)dt$$

Rearrange to get

$$f(x) - f(b) - f'(b)(x - b) = \int_{b}^{x} (x - t)f''(t)dt$$

Thus,

$$|f(x) - T_1(x)| = \left| \int_b^x (x - t)f''(t)dt \right|$$

Then note

$$\left| \int_{b}^{x} (x-t)f''(t)dt \right| \le \int_{b}^{x} (x-t)|f''(t)|dt$$

$$\leq M \int\limits_{b}^{x} (x-t)dt$$

$$\leq \frac{M}{2}(x-b)^2.$$

Note about "Bounds":

An upper **bound**, *M*, is a number that is always bigger than the function. The smallest possible upper bound is sometimes called a *tight* bound.

Examples: Find any upper **bound** (if it is easy to do so, find a *tight* upper bound).

1.
$$|\sin(5x)|$$
 on $[0,2\pi]$

2.
$$|x - 3|$$
 on [1,5]

3.
$$\left| \frac{1}{(2-x)^3} \right|$$
 on [-1,1]

4. $|\sin(x) + \cos(x)|$ on $[0,2\pi]$

5. $\left|\cos(2x) + e^{2x} + \frac{6}{x}\right|$ on [1,4]

Example (you do):

Let $f(x) = x^{1/3}$ and b = 8.

- (a) Find the 1st Taylor Polynomial.
- (b) Give a bound on the error over the interval J = [7,9].

(TN 2/3): Higher Order Approx.

The **2**nd **Taylor Polynomial** (or quadratic approximation) is given by

$$T_2(x) = f(b) + f'(b)(x - b) + \frac{1}{2}f''(b)(x - b)^2$$

The quadratic error bound theorem

(Taylor's inequality) states: on a given interval [a,b], if $|f'''(x)| \le M$, then $|f(x) - T_2(x)| \le \frac{M}{6}|x - b|^3$

Example:

Find the 2^{nd} Taylor polynomial for $f(x) = x^{1/3}$ based at b = 8 and find the error bound on the interval J = [7,9].

Taylor Approximation Idea:

If two functions have *all* the same derivative values, then they are the same function (up to a constant).

To explain, let's compare derivatives of f(x) and $T_2(x)$ at b.

$$T_2(x) = f(b) + f'(b)(x - b) + \frac{1}{2}f''(b)(x - b)^2$$

$$T'_2(x) = f'(b) + \frac{1}{2}f''(b)2(x - b) = f'(b) + f''(b)(x - b)$$

$$T_2^{\prime\prime}(x) = f^{\prime\prime}(b)$$

$$T_2^{\prime\prime\prime}(x)=0$$

Now plug in x = b to each of these.

What do you see?

Why did we need a ½?

What would $T_3(x)$ look like?

nth Taylor polynomial

$$f(b) + f'(b)(x - b) + \frac{1}{2}f''(b)(x - b)^{2} + \frac{1}{3!}f'''(b)(x - b)^{3} + \dots + \frac{1}{n!}f^{(n)}(b)(x - b)^{n}$$

In sigma notation:

$$T_n(x) = \sum_{k=0}^n \frac{1}{k!} f^{(k)}(b) (x - b)^k$$

Taylor's Inequality (error bound):

on a given interval [a,b],

if
$$|f^{(n+1)}(x)| \leq M$$
, then

$$|f(x) - T_n(x)| \le \frac{M}{(n+1)!} |x - b|^{n+1}$$

Side Note:

For a fixed constant, a, the expression $\frac{a^k}{k!}$ goes to zero as k goes to infinity.

So the expression $\frac{1}{(n+1)!}|x-b|^{n+1}$, will always go to zero as n gets bigger.

Which means that the error goes to zero, unless something unusual is happening with M, which will see in examples later.
